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►Group: 
Closure 
Associativity (a#b)#c=a#(b#c) 
Identity     a#i=i#a=a 
Invertibility a#b=i 

►p → q ≡ ¬p ∨ q 

►p only if q ≡ ¬q →¬p ≡ p→q 

►When p → q (≡ ¬p ∨ q) 
p is called a sufficient condition for q  
q is a necessary condition for p 

► “Everybody is cleverer than some 
monkey.” 
∀x∈H,∃y∈M,C(x,y) 

► “Lions are fierce Animals” 
∀x∈A (x is a lion → x is fierce) 

► “Some fish climb trees” 
∃x∈A (x is a fish ∧ x can climb trees) 

►Mathematical Induction 
[P(1) ∧∀k(P(k) →P(k+1))] → ∀n P(n) 

►Permutation: 

P(n,r)=n(n-1)(n-2)…(n-r+1)=n!/(n-r)! 
Number of permutations of n objects 
taken r at a time 

►Combination: C(n,r) = n!/r!/(n-r)! 

Number of combinations of n objects 
taken r at a time, ordering not matter. 

►The conjugate of z=a+bj is z’=a-bj 

►nth roots of complex number: 

Given z=r(cos θ+sin θj)=re^(j θ) 

n√z=n√r * e^[j*( θ+2kPi)/n],  
k∈{0..n-1}, 0<= θ<2Pi 

►Compute all nth roots of w: 

1. convert w into exponential form 
    z^n=r*e^jθ 
2.compute arg(z) 
    arg(z^n)= θ+2kPi, k=0..n-1 
    n arg(z)= θ+2kPi 
    arg(z)= θ/n+2kPi/n 
3.compute |z| 
    |z^n|=r 
    |z|=r^(1/n) 
4.compute z 
    z=|z|*e^(j*arg(z)), there are n-1 roots 

►A m × n matrix = m rows, n columns, 
a11 a12 … a1j … a1n 

a21 a22 … a2j … a2n 

…    …  …  …  …  … 

ai1 ai2 … aij … ain 

…    …  …  …  …  … 

am1 am2 … amj … amn 

aij is the element at i
th
 row and j

th
 column. 

m×n zero matrix, 0mn 

►symmetric matrix: A=AT 

►skew-symmetric matrix: A=-AT 

►A n×n matrix is a square matrix of order 

n. 
The inverse, A

-1
 of a n×n square matrix A 

is an n×n square matrix s.t. 
AA

-1
=A

-1
A=In 

►Row echelon form: 

The nonzero rows in A lie above all zero 
rows; 
The first nonzero entry in a nonzero row 
(pivot) lies to the right of the pivot in the 
row immediately above it. 

►Reduced row echelon form: 

A is already in echelon form; 
In every column containing a pivot, the 
pivot has value 1 and all other entries in 
the column are zero (IMOW: a row starts 
always with 1) 

►Gauss-Jordan Elimination: 

0.Principle: A|In= In|A
-1

 
1. Augment A with In to get A|In 
2. Apply EROs to reduce left part to In 
=> In|A

-1
 

3. The right part is A
-1

 

►Solve linear system: 

0.Principle: A×X=B => X=A
-1

×B 
1.A|B 
2.ERO to I|S 
3.S is the solution 

►Identity relation on A: IA={(a,a)|a∈A} 

If R⊆A×B, then the inverse of R, 

R
-1

={(b,a)|(a,b) ∈R} 

R
-1
⊆B×A 

►Given R⊆A×B, S⊆B×C, the 
composition of R and S 

R ∘ S={(a,c) ∈A×C|∃b∈B,  aRb ∧ bSc}  

►R is reflexive: 

  ∀x∈A, xRx :IA⊆R 

►R is symmetric: 

  ∀x, y∈A, (x,y)∈R→(y,x)∈R:R=R
-1

 

►R is transitive:  ∀x, y,z∈A, 

  ((x,y)∈R ∧ (y,z)∈R) →(x,z)∈R 

►R is antisymmetric: ∀x, y∈A, 

((x,y)∈R ∧ (y,x)∈R) →x=y 

►Equivalence relation: Reflexive, 
Symmetric, and Transitive 

►Partial order: Reflexive, Antisymmetric, 
and Transitive 

►Function:  f:X→Y 

iff for every x in X, there must be exactly 
one y in Y such that y = f(x). 
(∀x∈X • ∃y∈Y • y=f(x)) 

∧(∀x1,x2∈X • x1=x2) 

→ f(x1)=f(x2))  

►Injective, one-to-one: 

iff for every x in X, there is a y in Y such 
that f(x)=y and is unique. 

∀x1,x2∈X • f(x1)=f(x2) 

→x1=x2 
|X|<=|Y|; Range⊆Y 

►Surjective, onto: 
iff for every y in Y, there is at least one x 

in X such that f(x)=y 
∀y∈Y • ∃x∈X • f(x)=y 
|X|>=|Y|; Range=Y 

►Bijective, one-to-one 
correspondence 

iff it is both 
injective 

and 
surjective. 
|X|=|Y|; 

Range=Y 

►Pigeonhole principle: 

given f:X→Y with |X|,|Y| both finite, 
if |X|>|Y|, there is at least a y∈Y which is 

the image of at least 2 elements in X 

►Applying pigeonhole principle: 
1.find a function f:X→Y s.t. 
∃xi,xj∈X•xi≠xj∧f(xi)=f(xj) 

►Generalized pigeonhole principle: 

given f:X→Y with |X|,|Y| both finite, 
if |X|>k*|Y|, there is at least one y∈Y 

which is the image of at least (k+1) 
distinct elements in X 

►A walk is a finite alternating sequence 

of adjacent vertices and edges of G. 

A path is a walk from v to w with no 

repeating edge. 

A simple path is a path that with no 

repeated vertex other than the possibility 
that v=w. 

A closed walk is a walk that starts and 

ends at the same vertex. 

A circuit is a closed path. 

A simple circuit or cycle is a closed 

simple path. 

A trivial circuit is one with only one 

vertex and no edge. 

A circuit is non-trivial if it has >=1 edge.  

►A graph G is connected -> ∀v,w∈V(G), 

∃a simple path connecting v,w . 

If v,w∈V(G) ->  if one edge is removed, 

then there still exists a path from v to w in 
G. 

►A Hamiltonian Circuit of a graph G is 

a closed walk that contains: 
1. Non-repeated edges forming a subset 
of E(G); 
2. Non-repeated vertices, except the 
same start/end vertex, forming the FULL 
set of V(G). 

►If a graph G contains a Hamiltonian 
circuit, then G must contain a connected 

subgraph H with the following properties: 
1. V(H)=V(G), 
2. |E(H)|=|V(H)|=|V(G)|, 
3. ∀v∈V(H),deg(v)=2  in H. 

►An Euler path from v to w is one that 

starts at v and ends at w, passes every 
vertex at least once (>=1), and traverse 
every edge of G only once (=1). 

►An Euler circuit of graph G is a closed 

walk containing: 
1. Non-repeating edges forming the full 
set E(G), 
2. Possibly repeated vertices forming the 
full set V(G). 



►DeMorgan’s law: 
  ~(p∧q) ≡ ~p ∨ ~q 

  ~(p∨q) ≡ ~p ∧ ~q 

Commutative: 
  p ∧ q ≡ q ∧ p 

  p ∨ q ≡ q ∨ p 

Identity: 
  p ∧ T ≡ p 

  p ∨ F ≡ p 

Universal bound: 
  p ∨ T ≡ T 
  p ∧ F ≡ F 

Negation: 

  p ∧ ￢p ≡ F 

  p ∨ ￢p ≡ T 

Double negation: 
  ¬(¬p) ≡ p 

Idempotent: 
  p ∧ p ≡ p 

  p ∨ p ≡ p 

Absorption: 
  p ∨ (p ∧ q) ≡ p 

  p ∧ (p ∨ q) ≡ p 

Associative: 
  (p∨q)∨r ≡ p∨(q∨r) 

  (p∧q)∧r ≡ p∧(q∧r) 

Distributive: 
  p∧(q∨r) ≡ (p∧q)∨(p∧r) 

  p∨(q∧r) ≡ (p∨q)∧(p∨r) 

Conversion Theorem: 
  p → q ≡ ¬p ∨ q 

Modus ponens : method of affirming 
  p → q; p; ∴q 

Modus tollens : method of denying 
  p → q; ¬q; ∴¬p 

Conjunctive simplification : particularizing 
  p∧q; ∴p 

Conjunctive addition : specializing 
  p; q; ∴p∧q 

Disjunctive addition : generalization 
  p; ∴p∨q 

Rule of contradiction 
  ¬p→C; ∴p 

Disjunctive Syllogism : case elimination 
  p∨q; ¬p; ∴q 

Dilemma : case by case discussions 
  p∨q; p→r; q→r; ∴r 

Hypothetical Syllogism: chain implication 
  p → q; q → r; ∴p→ r 

►Universal Instantiation 
∀x∈D,P(x) 

∴P(c) 

►Universal Generalization 
P(c) for any arbitrary c from the domain 
∴∀x∈D,P(x) 

►Existential Instantiation 
∃x∈D,P(x) 

∴P(c) for some c 

►Existential Generalization 
P(c) 
∴∃x∈D,P(x) 

►Empty set: Ø, {} 
A∩B’=A-B 
(A-B)’=(A∩B’)’=A’∪B 

►Identity: 
  A∪Ø=A 

  A∩U=A 

Domination: 
  A∪U=U 

  A∩Ø=Ø 

Idempotent: 
  A∪A=A 
  A∩A=A 

Double Complement: 
  A’’=A 

Commutative: 
  A∪B=B∪A 

  A∩B=B∩A 

Associative: 
  A∪(B∪C)=(A∪B)∪C 

  A∩(B∩C)=(A∩B) ∩C 

Distributive: 
  A∩(B∪C)=(A∩B)∪(A∩C) 

  A∪(B∩C)=(A∪B)∩(A∪C) 

De Morgan’s: 
  (A∪B)’=A’∩B’ 

  (A∩B)’=A’∪B’ 

Identity: 
  A∪(A∩B)=A 

  A∩(A∪B)=A 

Alternative Representation for set 
difference: 
  A-B=A∩B’ 

► 

►Vertex v and w are e’s endpoints 

e connects v and w, i.e., e incident on 

both v and w. 

v is adjacent to w and vice versa. 

Two distinct edges are adjacent if both 

incident on a common vertex. 

Two distinct edges with same end points 
are parallel. 

When v=w -> e is a loop 

A node without an incident edge from 
another node is isolated. 

An empty graph has no vertex, no edge. 

A multi-graph is one that has 2 or more 

edges joining some pair(s) of vertices. 

A simple graph is one that has no loop 

nor parallel edges. 

A complete graph with n vertices, Kn, is 

a simple graph that has every vertex 
connected to every other distinct vertex by 
an edge. 

A bipartite graph is one whose vertices 

can be partitioned to 2 disjoint subsets V 
and W s.t. each edge only connects a v∈V 

and a w∈W. 


